

Dynamic Inter Array Cables Risk & Risk Management

Dr Alan Dobson

Umbilical Technology

Medium Voltage Power Distribution Subsea

Typical Deep Water Multiphase Pumping Umbilical

Cable Technology Dynamic Power Distribution Subsea: Umbilical Structure

#	Part	Function
1	Helical Bundle	Helically twisted bundle of components
2	Polymer Fillers	Improve handling and protect components
3	Tape	Improve handling during manufacture
4	Inner Polymer Sheath	Protect Components from armour loads
5	Armour Layers	Provide strength and ballast
6	Outer Polymer Sheath	Protect armour layers

Potential Failure Modes:

- Helical bundle over tension / bending
 Armour wire knuckles
- Helical bundle wear
- Helical bundle torsional
- Helical bundle constriction
- Helical bundle compressive overload
 Armour wire corrosion
- Inner / Outer sheath embrittlement
- Inner / Outer sheath hydrolysis

- Armour wire bird-caging
- Armour wire tensile overload
- Armour Fatigue
- Armour wire trellis wear
- Outer sheath tearing / piercing

Cable Technology Dynamic Power Distribution Subsea: Power Core

6

#	Part	Function
1	Conductor	Power Transfer
2	Semi Conductor	Minimise electrical stress on insulation
3	Insulation	Insulate electrical conductor
4	Semi Conductor	Minimise electrical stress on screen
5	Conducting screen	Provides grounding for secondary currents
6	Outer Sheath	Protects screen

Design Standards:

- ISO 13628-5
- API 17E
- IEC 60502-2
- IEC 60840
- IEC 63026
- Cenelec HD605

Potential Failure Modes:

- Conductor mechanically over stressed
- Conductor strand trellis wear
- Insulation electrically overstressed
- Conductor Fatigue
- Insulation thinning
- · Insulation ageing

- Insulation over heating
- Semi conductor delamination / thinning
- Conducting screen over stressed
- Outer sheath torn / pierced
- Corrosions of metallic layers
- Water penetration

Cable Technology Dynamic Power Distribution Subsea: Configuration

#	Part	Function
1	Latching Mechanism	Quick connection of cable to host
2	Bend Stiffener	Prevent overbending of cable
3	Buoyancy Modules	Support catenary overlength of cable
4	Tether Clamp	Connect cable to seabed
5	TDP Protection	Prevent wear to cable at seabed
6	Transition Joint	Connect cable to export or static cables

Potential Failure Modes:

- Fatigue of latching mechanism
- Wear of latching mechanism
- Bend stiffener cracking
- Marine growth fouling
- Buoyancy slipping
- Buoyancy flooding

- Clamp crushing cable
- Clamp slipping
- TDP protection wear
- Corrosion of metallic parts
- Embrittlement of metallic parts
- Cable splice electrical breakdown

Cable Technology Dynamic Power Distribution Subsea: Dynamic Service Risks

Impact of Dynamic Environment 2

Hang-Off Impact VIV Fatigue **Environmental Fatigue**

Sag & Hog Fatigue

Touch Down Point Fatigue Abrasion

Cable Fatigue Damage

Cable Technology Dynamic Power Distribution Subsea: Static Service Risks

Environment & Current induced Temperature Rise

Impact of Operating Temperature: Bundle load share Material Creep

Thermal ratcheting

Impact of Operating Temperature:

Corrosion of Metallics Electrolysis of Polymers Fatigue strength reduction Tensile Strength reduction

Cable Technology Dynamic Power Distribution Subsea: Clamping Risks

Clamping Consideration

Cable Technology

Dynamic Power Distribution Subsea: Summary

Guaranteed System Integrity Requires:

- A comprehensive understanding of the coupled mechanics of the system: Thermal, Mechanical and Electrical
- A comprehensive understanding of the material ageing mechanisms which are influenced by the system mechanics
- Qualified and proven materials and system design guidelines to minimize the influence of ageing

