DeepWind 2024: Concrete Floating Substructures, 8th October 2024

School of Science and Engineering University of Dundee

Drivers for Net Zero: UK Cements and Combinations

• How much is "encouraged" within DNV design codes? (e.g. C502)

dundee.ac.uk

Re-C3 Project: 2 Years - Final Report Published August 2024

Reporting

Range of Reclaimed Clays provided by industry partners

- RC2 5 clays are reclaimed from China clay quarries (kaolinite content approx. 50-90%)
- RC6 & 7 clays are reclaimed from cement quarries (kaolinite content approx. 20%)
- RC8 & 9 clays are reclaimed from cement quarries (kaolinite content approx. 50%)

dundee.ac.uk

Pilot Calcination of Test Clays: Denmark and Germany

Flash Calciner

(≈ 850°C for minutes)

Rotary Kiln Calciner

(≈ 800°C for 30 mins)

Pre and Post Calcination Processing (crushing/grinding)

dundee.ac.uk

Work Package K: Concrete Test Programme to BS 8500

BS8500 Reference Concretes

Example BS8500 Concrete Mixes

Cement Designation	w/c ratio	Total Powder, (kg/m ³)	Combination	Cement Designation	w/c ratio	Total Powder, (kg/m³)	Combination
CEM I	0.5	340	100% CEM I (S1)	CEM II/B-Q	0.4 0.5	425 340 283	70% CEM I (S1), 30% Brick dust
CEM II/A-L	0.5	340	85% CEM I (S1) 15% Limestone (S1)		0.4	425	55% CEM I (S1),
CEM II/B-V (Full Factorial)	0.35 0.4	429 425	75% CEM I (S1) 25% Fly ash	CEM II/C-M (Q-L)	0.5 0.6	340 283	15% Limestone (S1), 30% Brick dust
	0.5 0.6	340 283			0.35 0.4 0.5 0.6	429 425 340 283	70% CEM I (S1), 30% 1R/F calcined clay
CEM III/A	0.5	340	64% CEM I (S1) 36% GGBS	CEIVI II/B-Q			
CEM III/A	0.5	340	55% CEM I (S1) 45% GGBS	CEM II/C-M (Q-L)	0.35 0.4 0.5 0.6	429 425 340 283	55% CEM I (S1), 15% Limestone (S1), 30% 1R/F calcined clay
CEM IV/B(V)	0.5	340	60% CEM I 40% Fly ash				

Note: Mixes were dosed with a combination of SP + VMA to achieve required slump (S2/S3)

d

Superplasticiser doses required to achieve S2/S3 Slump (150 ± 30 mm)

Compressive strength of CEM II/B-Q Concretes 30% BD and Calcined Clay Mixes

■ 1 day ■ 3 day ■ 7 days ■ 14 days ■ 28 days ■ 56 days

Compressive strength of CEM II/C-M (Q-L) Concretes 30% Calcined Clay and 15% Limestone

■ 1 day ■ 3 day ■ 7 days ■ 14 days ■ 28 days

Accelerated Carbonation (BS EN 12390-12) (3.0% CO₂) after 10 weeks

FLASH CALCINED CLAYS

Chloride Migration (BS EN 12390-18)

Application

Work Package L: Demonstration of Re-C3 Self Compacting Concrete

Re-C3 Project Summary Points

- Reclaimed UK clays can produce highly reactive calcined clay cements (even with low kaolinite contents).
- Calcined clay reactions contribute significantly to compressive strength from around 3 days and 'largely' complete by 14 days.
- Durability performance: Outdoor sheltered carbonation trends are similar. Chloride resistance is exceptional.
- Demonstrations of these materials in self-compacting concrete show the materials are practical.

New Generation Waste-Derived Cements for Offshore Floating Wind Turbine Bases

		WP2: Materials Sourc Clay/Ash, Physical/Chemi	ing and Characterisation ical, Rheology, Heat		Cement
1: Supply Chain Desk Study Alcined Clays and Stockpile Ash		WP3: Development of <i>Rheology, setting, pumpin</i> <i>Manufacturing methods:</i>	Concrete Options ng, early age volume 3D, fibres, RCC	WP4: Durability in Scottish Deep Water Steel corrosion, wetting/drying, chlorides/ sulfate, freeze/thaw, biofouling/ invasive species	THE UNIVERSITY of EDINBURGH
		WP5: End of Life Map Environmental considerat recycling/reuse options, r	ping tions, legislation, recovery of waste		ENERGY
		WP6: Development of Design guidance, materic specification guidance, en	f Guidance al selection and nd of life guidance	→ bsi. Cen DNV	

dundee.ac.uk

University of Dundee

Re-C3 Final Report: Summary and Appendices

Reclaimed Calcined Clay for Low Carbon Cements (Re-C3)

Summary Report

A report part-funded by an ISCF TFI: large collaborative R&D projects ISCF TFI: large collaborative R&D projects: 10001906

Authors: Mineral Products Associat Heidelberg Materials UK projects: 10001906

erals University College London University of Dundee

https://cement.mineralproducts.org/Innovation/Reclaimed-calcined-clay-cements.aspx

August 2024